Exercise stress testing in cardiology

II Katedra i Klinika Kardiologii CM UMK

Objectives of exercise stress testing (ExST)

Diagnostics of coronary artery disease (CAD)

Estimation of risk and prognosis in subjects with diagnosed CAD or typical symptoms of CAD.

Absolute contraindications:

- # acute myocardial infarction
 (within 48 hours)
- # unstable coronary disease in high risk patients
- # uncontrolled cardiac
 arrythmia leading to
 hemodynamic disturbances or
 ischemic symptoms
- # acute endocarditis
- # symptomatic severe aortal valve stenosis

clinically relevant, symptomatic heart failure # acute pulmonary embolism or pulmonary infarction # acute noncardiac disease, which may negatively affects stress testing performance or which may worsen during stress testing # acute myocarditis or pericarditis *#* physical disability # lack of subject consent

Relative contraindications:

(test may be performed if benefits are greater than test-related risk)

- # left main coronary artery obstruction or its equivalent
- # moderate heart valve stenosis
- # electrolite disturbances (eg. hypo- or hyperkalemy)
- # tachyarrythmias and bradyarrythmias
- # atrial fibrillation with uncontrolled ventricule response
- # hypertrophic cardiomyopathy
- # mental disability with lack of cooperation during testing
- # advanced atrioventricular conduction blocks
- # uncontrolled hypertension (SBP>200mmHg, DBP>110mmHg)

Exercise stress testing - related risk

- According to meta-analysis: 10 myocardial infarction (MI), sudden cardiac deaths (SCD) or both for 10 000 tests
- According to Stuart 1 MI or SCD for 2500 tested subjets
- Review of 8 studies: SCD- 0,0-5/100 000 tests
- Higher risk at myocardial infarction and arrythmia diagnostics

Methodes of stress testing performance

stationary exercise bicycle ergometer

Methodes of stress testing performance

treadmill

Protocols used at exercise stress testing

- Clinical protocols of ExST include warm-up (small loading), escalation and continuation of exercise with increasing workload in a given time periods on every exercise level and in the rest phase.
- Bruce protocol, modified Bruce protocol and ramp- test performed on treadmill
- 50/50W protocol bicycle ergometer

Bruce protocol on treadmill

• Disadvantages:

- significant workload differences between exercise levels

- eventuality of walking and running in fourth level

- musculosceletal concerns

Advantages:

- numerous publications
- 3-minute levels

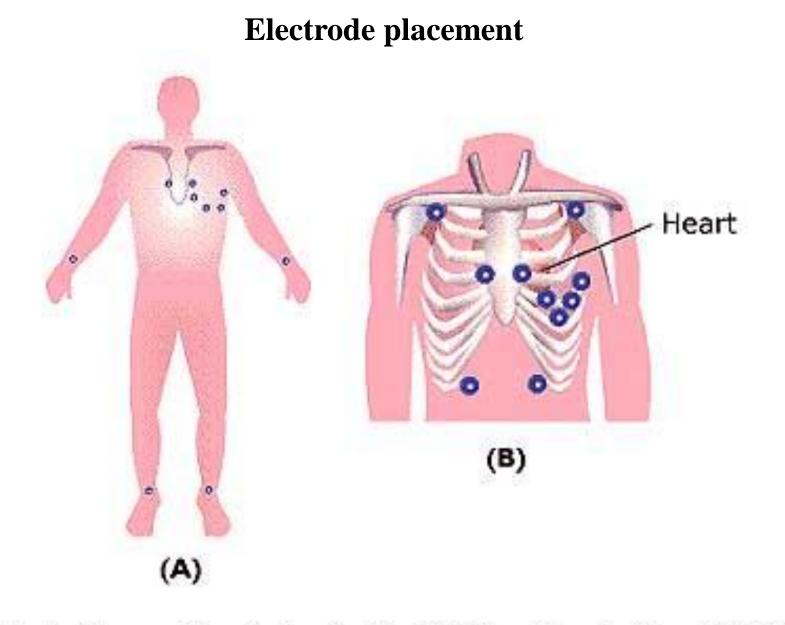
Ramp test - treadmill

- slow pass \rightarrow long-step walking
- gradual (every 10-60 sec) increase of slope
- Workload increase calculated on subjectestimated exercise ability (6 to 12 minutes)
- Continuous increase of workload without stationary levels

Bicycle ergometer

Protocols:

- Initial workload 10 or 25 W (150 kpm/min)
- 25W increase of loading
- every 2-3 minutes


Prepare of the patient before ExST

Patients are not allowed to:

- eat within 3 hours before
- smoke cigarettes
- undertake greater efforts 12 hours before
- take β-adrenolitic drugs
- take digoxin

(5xT1/2)

within 2 weeks before

Electrode Placement for a Resting, Routine ECG (A) vs. Exercise Stress ECG (B)

Absolute indications for ExST discontinuation

- ST segment elevation (>1 mm) in non-Q leads (except forV₁ and aVR)
- systolic blood pressure decrease >10 mm Hg (maitaining below preexercise values) regardless workload increase if any ischemic symptoms occuring
- anginal pain (level 3-4)
- Symptoms of central nervous system disturbances, decreased peripheral perfusion symptoms (cyanosis or paleness)
- sustained ventricular tachycardia
- ECG or blood pressure monitoring difficulties
- patient request

Relative indications for ExST discontinuation

- ST segment changes or QRS disturbances: ST segment depression (horizontal or decline >2 mm) or significant changes in electric heart axis
- Systolic blood pressure decrease >10 mm Hg without other symptoms of myocardial ischemia
- Increasing chest pain
- Fatigue, dyspnoe, lung wheezes, lower limbs muscle cramps or intermittent claudation, cardiac arrythmia other than sustained ventricular tachycardia, bundle branches blocks or intraventricular conduction disturbances
- Excessive blood pressure increase (systolic pressure >250 mm Hg and[or] diastolic pressure >115 mm Hg)

Post-exercise period

 6-8min monitoring/SBP, HR, ST segment returning nearly to preexercise period values

• 85% of abnormal post exercise reactions appear during exercise or within 5-6 minutes of resting phase

Exercise-Induced Hypotension EIH

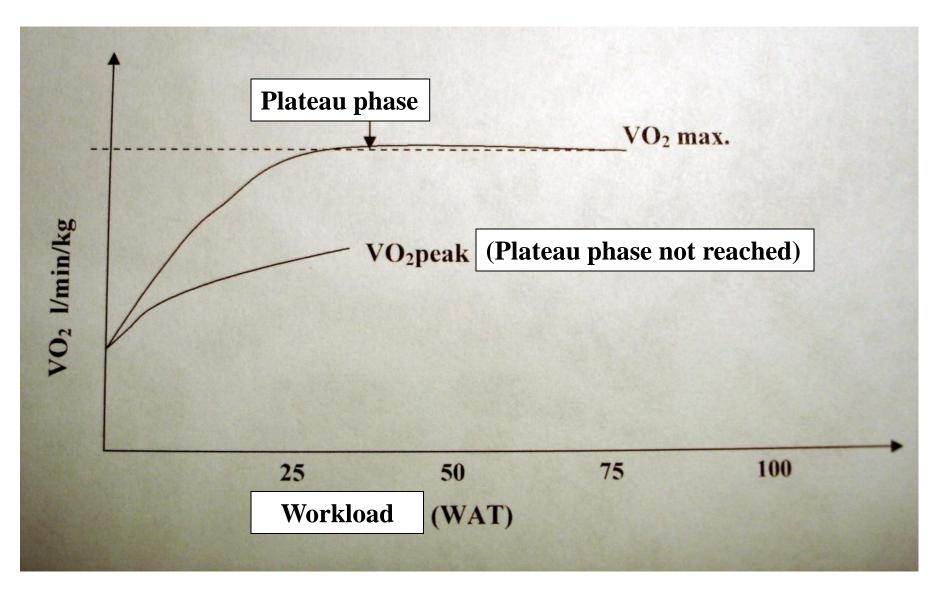
Drop of blood pressure or low BP increse < 20-30mm Hg comparing to standing preexercise BP

- Myocardial ischemia
- Severe impairment of left ventricle function
- Left ventricle outflow tract obstruction
- Using some drugs (eg. Beta-adrenolytics)
- Prolonged and intensive physical exercise
- Dehydration

Exercise-induced drop of blood pressure

- Poor prognosis when symptoms of ischemia occure - in 50% - left main artery obstruction or three-vessel coronary disease
- Higher rate of complications during stress test
- Improvement after coronary artery by-pass graft procedure

Cardio-pulmonary exercise test (CPET)

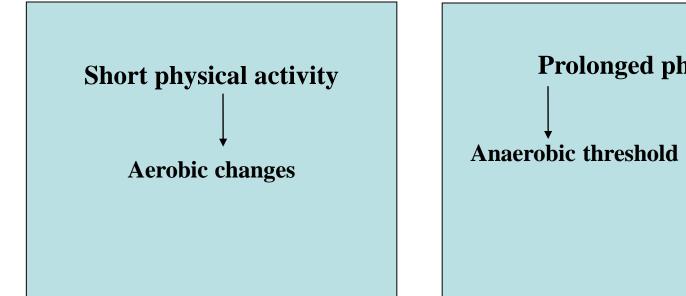

Physical capacity

- Ability to perform physical activity using large groups of muscles which cause energy consumption greater than in rest and leads to changes in internal body environment.
- Measurement of physical capacity total time of exercise untill maximum effort.

Physical capacity indicator

• Ability of body oxygen uptake or oxygen consumption (VO2)

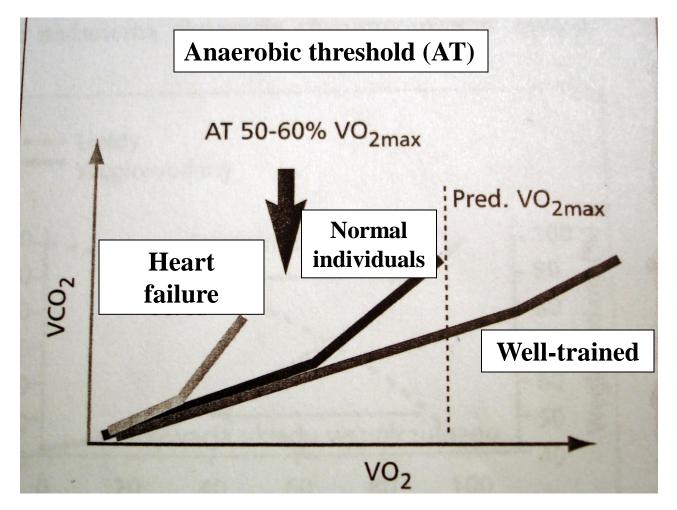
VO₂max i VO₂peak

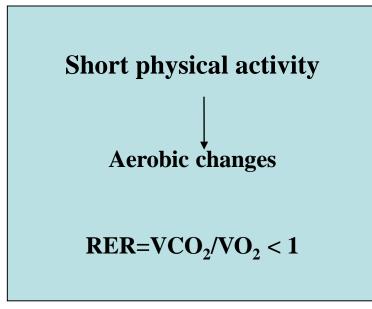


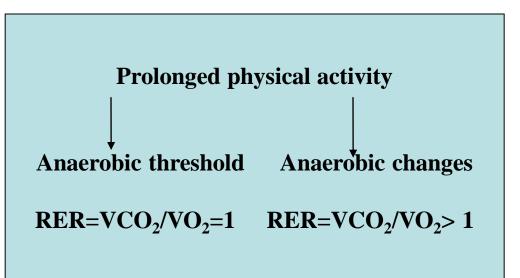
VO₂max referential values and its convert into metabolic equivalent (MET) in male and female age groups (1 MET means consumption 3.5ml/min/kg of oxygen)

Folia Cardiol. 2004; tom 11: supl. A: A8-A19.

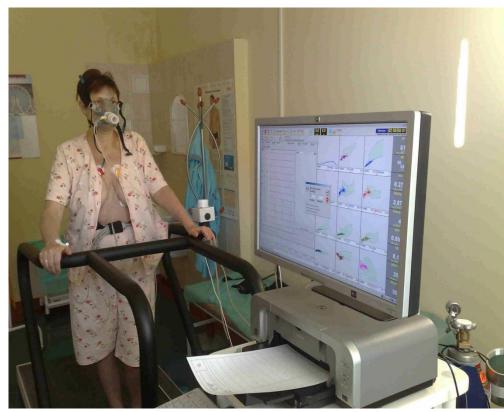
Age [years]	Male VO ₂ [ml/kg/min]	MET	Female VO ₂ [ml/kg/min]	MET
20-29	43 ± 7.2	12	36 ± 6.9	10
30-39	42 ± 7.0	12	34 ± 6.2	10
40-49	40 ± 7.2	11	32 ± 6.2	9
50-59	36 ± 7.1	10	29 ± 5.4	8
60-69	33 ± 7.3	9	27 ± 4.7	8
70-79	29 ± 7.3	8	27 ± 5.8	8


Metabolic changes in muscles during exercise


Prolonged physical activity


Anaerobic changes

Próg beztlenowy AT (anaerobe threshold)


Metabolic changes in muscles during exercise

CPET- cardiopulmonary exercise testing)

- Combination of exercise stress test and measurement of gases in ventilatory air
- On treadmill
- On bicycle ergometer
- VO₂ 3-5 ml/kg/min, RER < 0.90

Parameters determined during CPET

Cardiovascular

- BP blood pressure
- ECG 12-lead record
- HR heart rate
- HRR heart rate reserve –

(predicted maximal HR - measured maximal HR)

– Normal: <15 bpm

• O_2 Pulse – O2 consumption per heart beat

Parameters determined during CPET (cont.)

Basic

- VO₂ oxygen uptake
- VO_2/kg oxygen uptake per weight unit
- VCO₂ CO₂ production CO2 contents in expiratory air
- $\mathbf{RER} = \mathbf{VCO}_2 / \mathbf{VO}_2 \text{respiratory exchange ratio}$
- VO₂AT, VO₂/kgAT oxygen uptake at anaerobic therhold (when RER=1)
- **dVO₂/dWR (ml/min/W)** physical exercise workload ratio

Parameters determined during CPET (cont.)

Ventilatory

- VE minute ventilation
- TV Tidal Volume –
- **BF** breath frequency
- **BR breathing reserve = VE max VE reached**; difference between predictive ventilation and reached venilation
- sat O_2 oxygen arterial blood saturation determined by pulsoxymeter
- EQO₂=VE/VO₂- minute ventilation equvalent to uptake 1 litre of oxygen at given exercise level
- EQCO₂=VE/VCO₂- minute ventilation equvalent to exhale 1 litre of carbon dioxide at given exercise level
- Wskaźnik VE-VCO₂- regression curve slope

Indications for CPET

- Diagnosis
 - unexplained dyspnea
 - exercise limitation
 - documenting exercise-induced hypoxemia, titrating O2 prescription
 - exercise-induced asthma
- Assessment of **functional** exercise capacity
 - impairment or disability evaluation
 - preoperative evaluation
 - selection of patients for cardiac transplantation
 - prognosis: CF, heart or pulmonary vascular disease

Indications for CPET (cont'd)

- Exercise prescription:
 - pulmonary or cardiac rehabilitation
 - health maintenance or athletic training
- Assessing response to therapies

Contraindications to CPET

- acute ischemic changes on ECG
- unstable angina
- uncontrolled CHF
- uncontrolled dysrhythmia
- third-degree AV block
- uncontrolled hypertension (SBP>250, DBP>120)
- thrombophlebitis or intracardiac thrombi
- acute myocarditis or pericarditis
- severe AS
- acute febrile illness
- O2 saturation < 85% on RA